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Abstract At the time of settlement to the reef environ-

ment, coral reef fishes differ in a number of characteristics

that may influence their survival during a predatory

encounter. This study investigated the selective nature of

predation by both a multi-species predator pool, and a

single common predator (Pseudochromis fuscus), on the

reef fish, Pomacentrus amboinensis. The study focused on

the early post-settlement period of P. amboinensis, when

mortality, and hence selection, is known to be highest.

Correlations between nine different measures of body

condition/performance were examined at the time of set-

tlement, in order to elucidate the relationships between

different traits. Single-predator (P. fuscus) choice trials

were conducted in 57.4-l aquaria with respect to three

different prey characteristics [standard length (SL), body

weight and burst swimming speed], whilst multi-species

trials were conducted on open patch reefs, manipulating

prey body weight only. Relationships between the nine

measures of condition/performance were generally poor,

with the strongest correlations occurring between the

morphological measures and within the performance

measures. During aquaria trials, P. fuscus was found to be

selective with respect to prey SL only, with larger indi-

viduals being selected significantly more often. Multi-

species predator communities, however, were selective

with respect to prey body weight, with heavier individuals

being selected significantly more often than their lighter

counterparts. Our results suggest that under controlled

conditions, body length may be the most important prey

characteristic influencing prey survival during predatory

encounters with P. fuscus. In such cases, larger prey size

may actually be a distinct disadvantage to survival. How-

ever, these relationships appear to be more complex under

natural conditions, where the expression of prey charac-

teristics, the selectivity fields of a number of different

predators, their relative abundance, and the action of

external environmental characteristics, may all influence

which individuals survive.

Keywords Reef fish � Predation � Body size �
Body condition � Burst swimming speed

Introduction

Body characteristics and performance attributes are gen-

erally thought to play a large role in determining an

individual’s probability of survival throughout its lifetime.

These traits have been widely linked to the probability of

survival during a range of events, including predatory

encounters (Litvak and Leggett 1992; Janzen 1993;

Twombly and Tisch 2000; Dorner and Wagner 2003; Hoey

and McCormick 2004; Alvarez and Nicieza 2006; Husak

2006) and competitive interactions (Smith 1990; Marshall

et al. 2006; Persson and De Roos 2006; Van Buskirk 2007;

Zedrosser et al. 2007), and threat of starvation and disease

(Biro et al. 2004; Lyons et al. 2004; Bystrom et al. 2006;

Reim et al. 2006; Hall et al. 2007; Smith et al. 2007). In

recent years, the importance of these prey characteristics

during predatory interactions has received considerable

attention, as predation is widely thought to be one of the

major processes influencing the size of populations and the

structure of ecological communities (Sih 1987). The
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selective nature of predation means that prey characteris-

tics that decrease an individual’s vulnerability to predators

will be retained within a population, whilst those that

increase vulnerability will be selectively lost. The extent to

which predation is selective will be dependent on the

preferences and selective profiles of those predators within

the community.

Predator selectivity may be of particular importance

during periods of high mortality. Such cases are common

during transitional periods between life history stages for

organisms with complex life cycles (e.g. bipartite life cycle

of many amphibians, and marine invertebrates and fishes;

Werner 1986; Gosselin and Qian 1997; Hunt and Schei-

bling 1997; McCormick et al. 2002; Leis and McCormick

2002). If predation is selective during such periods, then it

may have a disproportionate influence on those traits that

are passed into successive life stages. If, however predation

is not selective, then high mortality alone does not neces-

sarily indicate a critical life stage for life history evolution

(e.g. Crouse et al. 1987).

Coral reef fishes are an ideal group on which to study the

selective nature of predation. At the time of settlement to the

reef environment, many species undergo a transitional per-

iod between a planktonic larval stage and a more ‘‘benthic-

associated’’ adult/juvenile stage, often marked by rapid

morphological and physiological changes (McCormick and

Makey 1997; McCormick et al. 2002). This period is char-

acterized by high levels of mortality, with upwards of 50% of

individuals being lost within the first 1–2 days post-settle-

ment (Doherty et al. 2004; Almany and Webster 2006).

Much of this mortality has been attributed to predation by

small ‘‘reef-associated’’ fish predators (Carr and Hixon

1995; Holbrook and Schmitt 2002). In addition, at the time of

settlement, individuals generally possess moderate to high

levels of variability in a number of traits known to influence

survival during a predatory encounter (McCormick and

Molony 1993; Hoey and McCormick 2004).

Prey body size is one morphological characteristic that

is generally thought to play a large role in influencing the

outcome of such encounters (Sogard 1997; Schmitt and

Holbrook 1999; Brunton and Booth 2003; McCormick and

Hoey 2004; Holmes and McCormick 2006). One common

theory (the bigger-is-better hypothesis) suggests that from a

prey’s perspective, being larger at a given life history stage,

results in a survival advantage, through reduced predation

rates (Rice et al. 1993; Takasuka et al. 2003), enhanced

abilities in competitive interactions and the acquisition of

shelter space (Holbrook and Schmitt 2002) and decreased

susceptibility to starvation (Sogard 1997; Schmitt and

Holbrook 1999). Thus, as prey size increases, vulnerability

to predation is predicted to decrease. An alternate ecolog-

ical theory, known as optimal foraging theory (OFT),

predicts that predators preferentially prey on prey of an

optimal size in order to maximise the net rate of energy

intake (MacArthur and Pianka 1966; Hughes 1980). This

theory predicts that, from a prey’s perspective, both large

and small size conveys a survival advantage during a

predatory encounter. The characteristics of the prey that are

targeted are contingent on the selectivity profile of the

predator, which tend to be dome-shaped (e.g. Rice et al.

1997). From a mechanistic perspective, this may result in

disruptive selection whereby both tails of the size distri-

bution are favoured.

Prey body condition has also been shown to have

important implications for survival during the early post-

settlement period (Mesa et al. 1994; Booth and Hixon

1999; Booth and Beretta 2004; Hoey and McCormick

2004). However, its direct influence on the outcome of

predator–prey relationships remains largely untested.

Condition of a fish may be measured in a number of dif-

ferent ways, including growth, lipid content, liver

hepatosomatic indices, body robustness and developmental

state (McCormick and Molony 1993; McCormick 1998;

Ferron and Leggett 1994; Hoey et al. 2007). Although a

number of studies have shown evidence of predator

selectivity with respect to prey body characteristics (So-

gard 1997; Booth and Hixon 1999; Vigliola and Meekan

2002; Holmes and McCormick 2006; McCormick and

Meekan 2007), to date no study has directly examined how

such traits influence the outcome of individual predatory

interactions during this early period.

The present study focuses on individual- and community-

level predator selectivity on a common Indo-Pacific coral

reef damselfish (Pomacentrus amboinensis) during the early

post-settlement period. Experiments were conducted with

respect to three ‘‘non-destructive’’ body and performance

attributes known to show moderate levels of variability at

the time of settlement: body length, body weight and burst/

escape swimming speed. Specifically, the aims of the study

were: (1) to examine the interrelationships between body

characteristics and performance attributes, including pre-

settlement growth and burst/escape swimming speed; (2) to

determine whether predation by the common predator

Pseudochromis fuscus, was selective with respect to prey

body size, body weight and burst swimming speed; and (3)

to determine whether predation by a natural multi-species

predator community was selective, and how it differed from

the selectivity regime demonstrated by P. fuscus.

Materials and methods

Study site

This study was conducted at Lizard Island (14�400S,

145�280E), northern Great Barrier Reef (GBR), Australia
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during November and December 2005 and 2006. The flow-

through salt water aquarium system at Lizard Island

Research Station was used to conduct the aquarium trials,

whilst the surrounding shallow lagoonal reefs and sand flats

were used for the patch reef trials.

Study species

The damselfish P. amboinensis was used as the prey

species for all experimental trials. This species is common

within coral reef fish communities in the Indo-Pacific,

particularly in the central GBR. Individuals of the species

settle to a wide variety of habitats on the northern GBR,

but are found in highest densities associated with small

reef patches at the base of shallow reefs. P. amboinensis

has a pelagic larval phase of between 15 and 23 days and

settles at 10.3–15.1 mm standard length (SL) (Kerrigan

1996) with its juvenile body plan largely complete

(McCormick et al. 2002). Once settled, P. amboinensis is

site attached, making it an ideal species for experimental

manipulation. The species recruits in substantial numbers

at Lizard Island around the new moon during the austral

months (October–January), and is easily collected at the

time of settlement with light traps (Milicich and Doherty

1994).

The brown dottyback, P. fuscus, was used as the model

predator species for the aquarium trials. P. fuscus is a small

(maximum size 72.4 mm SL), site-attached predator com-

mon on shallow reefs throughout the Indo-Pacific. This

species is an active pursuit predator that generally lives in

close proximity to prey populations. P. fuscus is known to

consume newly settled and juvenile fishes in both the

laboratory and field (Holmes and McCormick 2006;

Almany et al. 2007) and is diurnally active.

In the natural system, newly settled reef fishes are

subject to a range of resident and transient predators. At

Lizard Island the most common predators have been

identified as the brown-barred rock cod (Cephalopholis

boenak), moonwrasse (Thalassoma lunare), two species of

lizardfish (Synodus variegatus and Synodus dermatogenys),

and the brown dottyback (P. fuscus; Martin 1994, Beukers

and Jones 1997, Holmes and McCormick 2006).

Fish collection

Settlement-stage P. amboinensis were collected using

light traps moored overnight close to the reef crest, and

transported back to the Lizard Island Research Station at

dawn. Prior to the predation experiments, fish were

maintained in 25-l flow-through aquaria systems for

*24 h, and fed newly hatched Artemia sp. twice per day

ad libitum to allow for recovery from the stress of cap-

ture. Growth during this period was minimal. Fish used in

the prey condition/performance analysis were taken

straight from light trap catches and processed on the same

day.

Adult P. fuscus (38–71.4 mm SL) were collected from

surrounding reefs using clove oil and hand nets. All fishes

were maintained in individual 57-l flow-through aquaria

systems for 48 h before use in aquarium trials. Fish were

not fed during this period to standardize for satiation, and

to avoid handler-associated learning.

Correlation of prey condition/performance measures

Ninety-four P. amboinensis were randomly selected from a

single day’s light trap catch and measured for nine poten-

tial indicators of body condition and performance: SL,

maximum burst speed, mean burst speed, wet weight,

recent pre-settlement growth, dry weight, lipid content,

overall body condition and Fulton’s condition factor

(Fulton’s K). To obtain SL, individual fish were placed into

small clip-seal polyethylene bags with a small amount of

sea water and measured using calipers (± 0.1 mm).

To measure maximum and mean burst speed fish were

placed individually into a narrow aquarium (10 9

150 9 200 mm) filled to 30-mm depth with fresh seawater.

The narrow shape of the aquarium effectively forced the

fish to move in two dimensions, minimising errors asso-

ciated with movement away from the viewing plane.

Escape bursts in this species were generally observed to

occur within this ‘‘side on’’ viewing plane (McCormick and

Molony 1993), as opposed to the ‘‘top down’’ viewing

plane used in previous burst speed studies of Red Drum

larvae, Sciaenops ocellatus (Fuiman and Cowan 2003;

Fuiman et al. 2006). A 5 9 5-mm reference grid was

positioned on the back of the aquarium. Fish were

maneuvered to one end of the aquarium and a rubber ball

pendulum was dropped from a 45� angle against the glass

end of the aquarium immediately behind the fish, to induce

the burst response. The fish was allowed to recover from

stress before being maneuvered back to the end of the

aquarium. This process was repeated until either five reli-

able bursts were recorded or the fish became too stressed to

produce reliable bursts. Only those fish that recorded two

or more successful bursts were included in the analysis. A

digital camera (frame speed 0.04 s), positioned facing the

front of the aquarium, was used to record each burst. These

recordings were analysed, and the 5 9 5-mm grid was used

to determine the distance travelled over the first two frames

(0.08 s) of each burst. From these measurements, maxi-

mum and mean burst speeds were calculated for each fish.

Absolute distance travelled was used, as opposed to rela-

tive distance travelled (i.e. scaled for body size) as this is

thought to be a more appropriate estimate of an individ-

ual’s ability to escape a predation event.
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Fish were lightly blotted dry and weighed to the nearest

1 mg using a mass balance (wet weight). Euthanised fish

were then placed into a freeze drier for 24 h before being

weighed to the nearest 1 lg using a mass balance to obtain a

dry weight. Recent pre-settlement growth was determined

by examining the microstructural increments deposited

within the sagittal otolith. Otoliths were ground to produce a

thin transverse section (as per Wilson and McCormick 1999)

and increment widths were measured along the longest axis,

the most sensitive axis to growth changes recorded in the

otolith profile. Once all samples were completed, increment

widths were re-measured to avoid bias. The mean width of

the outer seven increments was used as a relative measure of

recent pre-settlement growth. The assumptions that the

frequency of increment formation is daily and the distance

between consecutive increments is proportional to fish

growth have been validated for P. amboinensis juveniles by

Pitcher (1988) and Hoey (1999).

To determine total lipid content each fish was homog-

enized in 1 ml distilled water immediately after freeze

drying. A 300-lm aliquot of each homogenate sample was

analysed for lipid content by first extracting the lipid

material using chloroform–methanol extraction (Mann and

Gallager 1985). This material was subsequently analysed

using the phosphosulphovanillin method, as described by

Barnes and Blackstock (1973). The method uses a cho-

lesterol standard calibrated against gravimetric values to

convert chlorometric values to total lipids. Chlorometric

values were obtained using a spectrophotometer (Labsys-

tems iEMS Reader MF) and associated computer software

(Genesis 3.04), at a wavelength of 520 nm. The cholesterol

standard was mixed at concentrations of 0, 2.5, 5, 7.5 and

10 mg ml-1 and run through the same extraction process

as the homogenate samples, to produce a calibration line

between chlorometric values and cholesterol concentration.

Once completed, a known ratio of 4:5 (cholesterol:lipid)

was used to convert the resulting values from cholesterol to

lipid concentration (mg ml-1). The initial dry weight

obtained for each sample was then used to express the total

lipid content as mg g-1 dry weight.

A measure of overall body condition was obtained using

residual regression analysis (Koops et al. 2004). This

method uses the residuals of a SL/wet weight regression as

an index of relative condition. Although its validity is

currently questionable, Fulton’s K was previously used

widely as a measure of body condition (e.g. Booth and

Hixon 1999; Hoey and McCormick 2004). To permit

comparison with such previous studies, Fulton’s K was

also calculated using the equation:

K ¼ 105 � wet weight gð Þ
.

standard length mmð Þ3
h i

Experiment 1: laboratory trials

Pomacentrus amboinensis were taken from light trap cat-

ches and sorted into groups of two (weight or burst speed

trials) or three (size trials), for each of three measures of

body and performance attributes: prey body size, body

weight, and burst swimming speed.

For trials testing prey body size, individual P. amboin-

ensis were first placed in a clip-seal plastic bag containing a

small amount of aerated seawater and measured for SL

using calipers (± 0.1 mm). Fish were placed into ‘‘groups’’

of three, such that one individual of each of three size

classes was present. These size classes were set at 10.8–

11.5, 11.9–12.1, and 12.5–13 mm SL. The classes were

chosen to span the entire size range of individuals at the

time of settlement. The size difference of individuals

between classes for all trials was always at least 0.5 mm.

Overall, the size of individuals caught in light traps during

the course of the experiment ranged between 10.8 and

13 mm SL, with a mean of 11.94 mm. Thus, a difference

of 0.5 mm between size classes represents *4.2% of the

mean prey size.

To test the influence of prey body weight, P. amboinensis

were randomly selected and placed into one of two identical

25-l aquaria with flowing seawater. Fish in one aquaria were

fed ad libitum (high feed treatment) with Artemia sp. nauplii,

whilst those in the other aquaria were fed 1/5 ad libitum (low

feed treatment). The different feed trials were used in order to

accentuate the level of variability in standardized body

weight amongst individuals. After 2 days, the fish were

removed from both aquaria, measured for SL (±0.1 mm

using calipers) and weighed (±1 mg). In order to decrease

fish stress during the weighing process, fish were first

anaesthetized using MS-222 (0.1 mg ml-1 sea water).

P. amboinensis from the high feed treatment and of heavier

weight (‘‘‘heavy’’’ individual) were paired with those from

the low feed treatment and of lower weight (‘‘light’’ indi-

vidual), but equal SL. A standardized weight difference of

5–10 mg was maintained between individuals within a pair

throughout the experiment. Individuals within the pair were

tagged with either a red or black subcutaneous fluorescent

elastomer tattoo using a 27-gauge hypodermic needle for the

purpose of individual identification, as per Hoey and

McCormick (2006). Tag colours were alternated between

replicate trials to avoid the possibility of predators selecting

prey based on tag colour. Hoey and McCormick (2006)

found that the tagging technique had no influence on survival

or growth of P. amboinensis in aquaria over a 2-week period.

The wet weight of individuals used for trials during the

experiment ranged between 22 and 74 mg, with a mean

of 52.04 mg. Thus, a difference of 5–10 mg between weight
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classes represents *9.6–19.2% of the mean prey weight.

The mean SL of prey was 12.2 mm.

In order to test the influence of prey burst speed, indi-

vidual P. amboinensis were firstly transferred to a 25-l flow-

through aquarium for 24 h. After this period, fish were

removed and measured for SL using calipers (±0.1 mm).

Individuals were then measured for burst swimming speed

as described above. In order to reduce stress on the fish, two

to three reliable bursts were obtained per individual only.

P. amboinensis with a high burst speed (‘‘fast’’) were paired

with those with a low burst speed (‘‘slow’’), but equal SL.

Individuals were tagged for identification purposes in the

same manner as above. The difference in burst speed

between fast and slow individuals in a pair ranged from

110–280 mm s-1. The burst speed of all individuals mea-

sured during the course of the experiment ranged between

201 and 825 mm s-1, with a mean of 423.98 mm s-1.

Therefore, the difference of 110–280 mm s-1 between

individuals in a pair represents *25.9–66% of the mean

prey burst speed. The mean SL of prey was 11.98 mm.

Eighteen identical flow-through aquaria were con-

structed, as per Almany et al. (2007). Each aquarium had an

internal volume of 57.4-l (600 9 255 9 375 mm). Aquaria

were divided into two equal-sized sections by a removable

opaque perspex partition. A 15-cm-length of 105-mm-

diameter PVC pipe cut in half was placed into one section of

the aquarium as a predator shelter. A single, artificial (white

moulded resin) branching coral (item no. 21505; Wardleys/

TFH, Sydney; dimensions: 140 9 115 9 50 mm) was

placed in the other section as prey shelter. Aquaria were

surrounded by black plastic to visually isolate them from

each other and other external disturbances. A small hole

was cut in one side of the plastic to allow observation of the

trials.

At the commencement of each trial, aquaria were divided

in two with the opaque partition. A single P. amboinensis

group/pair was placed into one half, along with the artificial

branching coral. A single predator (P. fuscus) was allowed

to acclimate in the opposite section of the aquaria for 48 h

prior to the trials. Prey were acclimated for 1 h before the

partition was removed and the trial started. Prey abundance

was continuously monitored for the first 20 min and every

10 min thereafter. When one or more of the prey individuals

were found to be missing, the trial was ended. Any survi-

vors were either re-measured for SL (body size trials), or

their tag colour was recorded (body weight and burst speed

trials) to determine the identity of the missing individual(s).

If more than one prey were found to be missing, the trial

was discarded. If a result had not occurred within 24 h, the

trial was discarded. The mean SL of predators over all trials

was 55.89 mm. Thirty-four successful trials were run test-

ing prey body size, whilst 25 successful trials were run to

test both prey body weight and burst swimming speed.

Experiment 2: field trial

Pomacentrus amboinensis were taken from light trap cat-

ches and sorted into pairs as per the protocol set out in the

prey body weight trials in experiment 1. Each pair con-

sisted of one light and one heavy individual for a

standardised body length. The wet weight of individuals

weighed for trials during the course of the experiment

ranged between 46 and 74 mg, with a mean of 59.04 mg.

The weight difference of 5–10 mg between weight classes

represents *8.5–16.9% of the mean prey weight. The

mean SL of prey was 12.61 mm.

A series of small patch reefs (20 9 20 9 20 cm) were

constructed on the sand flat immediately adjacent to the

edge of a shallow lagoonal reef. Patches were arranged

approximately 2 m from the reef base and approximately

3–4 m apart within a 50-m-wide section of reef edge. Each

patch consisted of a combination of live and dead Pocil-

lopora damicornis (a bushy scleractinian). Such patch reefs

are common settlement sites for this species (McCormick

and Hoey 2004). All patches were open to the full array of

reef-based and transient predators at each site.

Prior to releasing a tagged pair, the patch reef was

cleared of all resident fishes and large invertebrates using

small hand nets. A single P. amboinensis pair was then

placed onto patch reefs and shielded by a diver from pre-

dators for 5–10 min until acclimated to the new

environment. Within 30 s of release, fish were observed

feeding on food items from the water column, which sug-

gested a rapid acclimatization to their new environment.

Survival of each of the experimental pairs was moni-

tored 3 times per day (morning, mid-day, evening) by

visual census. Each replicate trial ended when one or both

of the tagged fish were found to be missing from a patch, at

which point the identity of the remaining fish was recorded

and the surrounding reef area was searched to determine

whether the missing individual had emigrated. If a result

was not obtained within 24 h, the P. amboinensis pair was

removed and the trial was abandoned. Trials where both

individuals were found to be missing were discarded from

the replicate group. A total of 48 trials were run in order to

obtain 23 successful results.

Analysis

Pearson’s correlations were used to examine relationships

among the eight condition measures. The coefficient of

variation (CV) was calculated for the burst speed of each

individual, using replicate recordings obtained from the

correlation experiment. This was used to obtain an estimate

of performance consistency among replicate bursts for

individuals. CVs were calculated using the number of

successful bursts, which varied between 2 and 5.
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Tests of significance for Pearson’s correlations were not

corrected for multiple tests, due to the exploratory nature of

the analysis. The frequency of first mortality between

treatments, within each set of predation trials, was com-

pared using a v2 goodness of fit test. With the exception of

the size-based aquarium trials, Yates’ correction was

incorporated in all analyses to correct for df = 1.

Projected survival over the 24-h period of predation

trials, incorporating censored data previously excluded in

v2 tests, was analysed using survival analysis. Projected

survival curves of each treatment within a trial set were

calculated and plotted using the Kaplan–Meier product–

limit method (Kaplan and Meier 1958). The Kaplan–

Meier method is a nonparametric estimator of survival

that may incorporate incomplete observations, such as

those cases in this study where two prey individuals were

found to be missing before the trial could be closed.

Projected survival between treatments within trial sets

was compared using a Cox–Mantel test (weight- and

burst speed-based laboratory trials, weight-based field

trial) or a v2 test for multiple groups (size-based labo-

ratory trials).

Results

Correlation of prey condition/performance measures

The nine measures of condition/performance of P. ambo-

inensis at settlement displayed markedly different levels of

variability among fish (Table 1). Maximum and mean burst

speed were the most variable (CV = 25.9 and 23.2%,

respectively), followed by lipid content (CV = 17.4%).

Wet weight (CV = 14.3%), dry weight (CV = 13.2%) and

Fulton’s K (CV = 10.5%) displayed moderate levels of

variation, whilst SL (CV = 3.1%) and recent pre-settle-

ment growth rate (CV = 8.1%) displayed the lowest levels.

An accurate estimate of variability for overall body con-

dition (obtained during residual regression analysis) was

not possible, due to the positive and negative expression of

the variable measures (range = 0.01348 to –0.01349,

SD = 0.00525)

Correlations between the nine measures were generally

poor (Table 2). The morphological measures were the

general exception, with SL, wet weight and dry weight all

displaying strong positive correlations. Body condition,

wet weight and Fulton’s K, as well as maximum and mean

burst speed, also displayed strong positive relationships,

whilst lipid content and dry weight showed a slightly

weaker negative relationship. Weaker correlations also

existed between SL and lipid content (negative), dry weight

and body condition (positive), SL and recent pre-settlement

growth (positive), and dry weight and recent pre-settlement

growth (positive). Correlations between the performance

(maximum or mean burst speed) and morphological/con-

dition measures were poor overall, with SL being the only

measure correlated with maximum burst speed, albeit only

weakly (r = 0.252, Table 2).

The consistency of burst speed within individuals was

moderate, with a mean CV of 14.38% (± 0.95% SE) and a

median CV of 15.44% for the 89 individuals measured.

Experiment 1: laboratory

During aquarium trials, where prey from three size classes

were exposed to the predator P. fuscus, prey fish from the

largest size class (12.5–13 mm SL) were found to be

selected first significantly more often than those of the

small and medium size classes (vdf 2
2 = 24.772, P \ 0.001;

Fig. 1). This result occurred in 25 (73.5%) of the 34 trials

run, whilst small and medium prey sizes were selected first

in only five (14.7%) and four (11.8%) trials, respectively.

A similar pattern was found in the projected survival

schedules of the three different size classes, with survival

analysis showing a significant difference over the 24-h

duration of the trials (vdf 2
2 = 17.258, P = 0.0002; Fig. 2).

Projected mortality of large individuals was initially high,

with 50% mortality occurring within 0.3 h and 80%

Table 1 Statistical summary of

the nine measures of condition/

performance obtained from

newly settled Pomacentrus
amboinensis collected from

light traps (n = 94)

CV Coefficient of variation

Condition measure n Mean Range CV

Standard length (SL) (mm) 94 12.3 11.4–13.3 3.1

Wet weight (g) 94 0.05 0.035–0.069 14.3

Dry weight (g) 93 0.01 0.009–0.016 13.2

Body condition index 94 -0.00028 -0.01398–0.01348 N/A

Fulton’s K 94 25.9 18.9–32.1 10.5

Lipid content (mg/g) 87 102.9 60.9–150.3 17.4

Maximum burst speed (mm/s) 89 491.3 125–800 25.9

Mean burst speed (mm/s) 89 423.8 125–608.8 23.2

Recent pre-settlement otolith

growth rate (mm/day)

74 16.9 13.3–19.9 8.1
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mortality occurring within 1.3 h. Survival then became

relatively stable for the remainder of the trial period. Pro-

jected mortality of both small and medium individuals was

comparatively more constant over the duration of the trials,

with *50% mortality occurring at 3.5 and 5.7 h, respec-

tively. One hundred percent mortality was predicted for all

groups 19.6 h after the commencement of trials

No difference in predator choice was detected in either

the weight-based or burst speed-based trials during the

aquarium experiments (both vdf 1
2 = 0.00, P = 1.00). The

mortality of both treatments within a pair was almost

identical in both cases, with lighter and slower individuals

being selected marginally more frequently (both chosen

first in 52% of trials) than their heavier and faster coun-

terparts during respective trial sets. Similarly, no

difference was found between the projected survival

schedules of either treatment in both the weight-based and

burst speed-based trials over the 24 h trial period (Cox–

Mantel38,38 = 0.000, P = 1.000; and Cox–Mantel26,26 =

0.000, P = 1.000, respectively). Projected mortality was

initially high during the weight-based trials, with *70%

mortality occurring within 0.7 and 0.9 h for light and

heavy individuals, respectively. Mortality then eased, until

100% mortality occurred for both groups at *4.4 h. For

the burst speed-based trials, projected mortality remained

extremely high for the duration of the trials, with 50%

mortality occurring at 0.09 and 0.14 h for slow and fast

individuals, respectively, and 100% mortality occurring at

0.58 h for both groups.

Table 2 Correlations among nine measures of condition/performance of newly settled P. amboinensis collected from light traps (n = 94)

SL Wet

weight

Dry

weight

Body

condition

Fulton’s K Lipid

content

Maximum

burst speed

Mean

burst speed

Recent

pre- settlement

growth

SL 1.00 0.647*** 0.809*** 0.001 ns -0.001 ns -0.338** 0.252* 0.207 ns 0.3**

Wet weight 1.00 0.735*** 0.761*** 0.758*** -0.167 ns 0.089 ns 0.112 ns 0.265*

Dry weight 1.00 0.271** 0.263* -0.351*** 0.074 ns 0.065 ns 0.361**

Body condition 1.00 0.995*** 0.059 ns -0.086 ns -0.021 ns 0.106 ns

Fulton’s K 1.00 0.062 ns -0.092 ns -0.03 ns 0.101 ns

Lipid content 1.00 0.051 ns 0.113 ns -0.127 ns

Max. burst speed 1.00 0.924*** -0.051 ns

Mean burst speed 1.00 -0.01 ns

Pearson correlation coefficients are given

* P \ 0.05, ** P \ 0.01, *** P \ 0.001

Prey standard length (mm)
10.8 - 11.5 11.9 - 12.1 12.5 - 13
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Fig. 1 Frequency of selection of newly settled reef fish Pomacentrus
amboinensis by the common predator Pseudochromis fuscus during

size-based aquarium trials
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Fig. 2 Kaplain–Meier product–limit plot for predicted survival of

small [10.9–11.5 mm standard length (SL); filled diamond], medium

(11.9–12.1 mm SL; open circle) and large (12.5–13 mm SL; filled
triangle) size classes of prey during size-based predation trials with

P. fuscus
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Experiment 2: field trials

There was a significant difference in survival between

heavy and light individuals during the weight-based pre-

dation trials on open patch reefs, with the ‘‘heavier’’

individuals found to be missing more frequently than their

‘‘lighter’’ counterparts (v df 1
2 = 4.348, P = 0.037; Fig. 3).

This result occurred in 17 (73.9%) of the 23 trials. How-

ever, the difference between the projected mortality curves

of the two treatments was non-significant over the 24 h

trial period when analysed using survival analysis (Cox–

Mantel34,56 = 1.662, P = 0.096; Fig. 4). Due to the fact

that trials were started in the late afternoon, and censuses

could not be completed overnight, the first recordings of

mortality did not occur until 16–18 h into the trial. Any

mortality that occurred overnight was therefore recorded in

the 16- to 18-h period. As such, projected survival of light

individuals decreased from 100% at 16 h to *70% at 18 h,

before stabilizing to reach *55% survival at the end of the

trial period (24 h). Projected survival was lower during the

16- to 18-h period for heavy individuals, with a drop from

100% to *55%. The mortality rate eased over the fol-

lowing 6 h, leaving *35% survival at the end of the 24-h

trial period.

As there was no evidence of emigration away from

patches during the experiment and all prey individuals

were released in good condition, any mortality during the

trials on open patches was directly attributed to localised

predation by fish predators.

Discussion

The generally selective nature of mortality has been well

documented during the last decade (Gosselin and Qian

1997; Sogard 1997; Blanckenhorn 1998; Meekan et al.

2006; Anderson et al. 2008). The causes of such selective

loss have varied, with examples of starvation, disease,

competition and predation all being shown in a range of

different systems. There is now also increasing evidence to

suggest that predation is selective on coral reef fishes at the

time of settlement (e.g. Booth and Hixon 1999; Booth and

Beretta 2004; Hoey and McCormick 2004; McCormick and

Hoey 2004; Holmes and McCormick 2006; Gagliano et al.

2007). The relative importance of this to the structure of

future populations may well be amplified by the high, type

III mortality characteristic of this period (Almany and

Webster 2006). Our study contributes significantly to this

body of literature, and provides direct evidence of size-

selective predation by a single predator species during this

period. The dottyback P. fuscus, a common predator of

small reef fishes (Beukers and Jones 1997), was found to be

highly selective towards individuals of larger SL when

tested in an aquarium system. This finding confirms the

suggestion of positive size selection by the dottyback from

a previous field experiment (McCormick and Meekan

2007). Interestingly, the same predatory species was found

to be non-selective towards both prey body weight and

burst/escape swimming speed when the confounding

influence of variable fish length was experimentally

removed.

With the exception of morphological characteristics

(i.e. SL, wet weight, dry weight), correlations between
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Fig. 3 Frequency of selection of light or heavy newly settled

P. amboinensis during weight-based trials on open patch reefs.

Heavy individuals were defined as having a higher wet weight for a

standardized SL (*9.6–19.2% greater) than light individuals
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Fig. 4 Kaplain–Meier product–limit plot for predicted survival of

light (open circle) and heavy (filled diamond) standardized weight

classes of prey during weight-based predation trials on open patch

reefs
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measures of body condition were generally found to be

poor. This result is similar to the findings of other studies

by McCormick and Molony (1993), Kerrigan (1996) and

Hoey and McCormick (2004) who consequently suggested

that selection with respect to one trait has little influence on

the patterns of variability in other traits. Both SL and dry

weight were found to be correlated with lipid content,

displaying a fairly strong negative correlation in both cases.

Interestingly, similar relationships were obtained between

SL and lipid content in studies by Kerrigan (1996) and

Hoey and McCormick (2004), indicating that lipid content

may decrease with increasing size during this life history

stage. This relationship may be the result of trade-offs

carried over from the larval life stage. For example, fast

growth during the larval period may result in smaller size at

settlement and higher lipid levels. However, if larval

growth is slower (due to cooler water temperatures, poorer

environmental conditions, or just as a phenotypic trait), fish

may settle when older, larger and with less lipids (Meekan

et al. 2003; Hoey and McCormick 2004). Growth rate at

the end of the larval phase was also found to be positively

correlated with SL and dry weight, indicating that events

occurring late in the larval stage may be important to

subsequent survival during the early post-settlement period

(Searcy and Sponaugle 2001).

Although the two measures of burst speed (i.e. mean and

maximum) were correlated with one another, neither was

found to be strongly correlated with morphological mea-

sures. The exception was a weak positive relationship

between maximum burst speed and SL. Previous studies

have presented a much stronger link between these two

traits, with both Bailey (1984) and Fuiman (1986) showing

a positive relationship between burst speed and fish length.

Indeed the positive relationship between the two has been

widely integrated into fish ecology through the bigger-is-

better hypothesis, which often associates increased speed

as a characteristic of larger size (Fuiman 1989; Paradis

et al. 1999). However, the results presented in this study

suggest that the two might not be as closely related as

previously thought, at least during this life stage. McCor-

mick and Molony (1993) made a similar conclusion in a

study of newly settled goatfish (Upeneus tragula), finding a

comparable correlation coefficient between SL and burst

speed (0.158) to those obtained in this study (0.207 and

0.252). The difference between these and other studies that

find a relationship between size and performance may be

because other studies have integrated findings over the

whole of the larval phase, thereby encompassing a wide

range of different developmental stages and performance

capabilities. Meanwhile, the present study and that of

McCormick and Molony (1993) examined the relationship

at a specific developmental stage (metamorphosis and

settlement).

According to the bigger-is-better hypothesis, larger size

should convey a survival advantage for prey during such

predatory encounters (Rice et al. 1993). Indeed, there is a

significant body of literature to suggest that such is the case

during the early juvenile period in coral reef fishes (e.g.

Schmitt and Holbrook 1999; Searcy and Sponaugle 2001;

Brunton and Booth 2003). In contrast to these previous

findings, however, this study shows that larger body size

may actually be disadvantageous to settlement stage indi-

viduals during encounters with P. fuscus. This result is

consistent with a recent field study by McCormick and

Meekan (2007), who found that the removal of P. fuscus

from territories resulted in a shift in the direction of local

juvenile size selection from negative (i.e. selection of lar-

ger individuals) to random. The source of the inconsistency

between studies lies in the duration over which selective

processes are measured, with previous studies largely

assessing selection over a period of days to weeks. This has

the potential to mask those processes occurring immedi-

ately around the time of settlement, when individuals are

naı̈ve to reef-based predators and hence most vulnerable to

predation. In contrast, the current study assesses predator

selectivity during the initial 24 h only, and is therefore

thought to be a more accurate representation of the pro-

cesses occurring during this potentially critical period.

There are a number of mechanisms that may underlie

the negative size selection observed in this study. Predators

may be making an active choice to select the prey size that

provides the highest energy return, in keeping with OFT,

which predicts that predators should prey upon those

individuals that will maximize the energy return per unit of

handling time (MacArthur and Pianka 1966; Hughes 1980).

In the current predator–prey interaction, P. fuscus may be

actively selecting larger prey due to the associated higher

energy return for three reasons: burst speed did not influ-

ence whether an individual P. amboinensis was captured

(i.e. faster individuals are selected equally as often as

slower individuals); correlations between escape/burst

speed and body size were generally poor, and energy return

increases with prey body size (Holmes and McCormick,

unpublished data).

Alternately, patterns of prey body size selection by

P. fuscus could be explained by behavioural differences

between large and small prey. Huntingford (2007) dis-

cussed the idea that an individual’s behaviour can be

classified as either ‘‘proactive’’ (bold) or ‘‘reactive’’

(timid), in relation to how they react in a given situation.

She further suggests that how aggressive an individual is to

a conspecific is often correlated with its readiness to take

risks in other contexts. Arguments in favour of such

‘‘behavioural syndromes’’ have recently gained significant

momentum, and have now been documented in a range of

animal groups, including insects (Johnson and Sih 2007),
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freshwater fishes (Bell and Sih 2007; Wilson and

McLaughlin 2007), birds (Dingemanse et al. 2004), lizards

(Stapley and Keogh 2005) and mammals (Dochtermann

and Jenkins 2007). Given that size-based dominance hier-

archies are commonly observed within reef fish

communities during the early post-settlement period (per-

sonal observations), larger more aggressive individuals

may be proactive in their behavioural decisions, making

them more susceptible to certain forms of predation.

Another possible explanation is that predation by

P. fuscus may have been selective towards lipid content

rather than SL. SL was found to be negatively correlated

with lipid content in this study, meaning that the larger

individuals selected in trials were also likely to have lower

lipid reserves than their smaller counterparts. If this in

some way co-varied with an unmeasured characteristic,

such as relative ‘‘boldness’’ (Stamps 2007; Biro and

Stamps 2008), then this could be the underlying mecha-

nism of selection, as opposed to body length. Hoey and

McCormick (2004) recorded a similar result to that alluded

to in this study, with predation being selective towards low

lipid content during field experiments on newly settled reef

fish. However, the problems associated with reliably

assessing lipids without causing harm to the subject mean

that this is a difficult characteristic to manipulate and test

during size-standardised predation trials. It is likely that

lipid levels and size are closely related at the time of set-

tlement as a result of growth tradeoffs imposed during the

larval stage (Meekan et al. 2003). Therefore, during this

life stage, a difference in one may also be associated with a

difference in the other variable and the target of selective

processes will be difficult to identify.

It is interesting to note that the recorded positive cor-

relation between SL and recent pre-settlement growth,

means that selection by P. fuscus favours slower growth at

the time of settlement. Although this contradicts findings

by Searcy and Sponaugle (2001) and Meekan et al. (2006)

it is supported by more recent studies by Gagliano et al.

(2007) and Meekan et al. (in review), who both found

mortality to be selective against faster pre-settlement

growth at the time of settlement. Although such differences

could be a result of different prey and predatory species

(e.g. Takasuka et al. 2007), the major factor is thought to be

the difference in the time frame over which selection was

measured, as described above.

Burst speed was expected to influence survival because

prey with a faster escape response should have a survival

advantage over slower counterparts. Burst speed was also

highly variable among individuals making it an ideal can-

didate for selection. However, the present study found that

burst speed did not influence whether a fish was captured

during a predatory encounter. In one of the only other

studies to directly examine the influence of prey

performance on survival during predatory interactions for

any aquatic system, Fuiman et al. (2006) came to a similar

conclusion, finding that burst/escape speed did not influence

the survival of red drum larvae (Sciaenops ocellatus) during

predatory encounters with the longnose killifish (Fundulus

similis). This outcome, combined with the moderate level of

variability in burst speed across repeated bursts for an

individual, suggests that escape ability may have a random

factor that is intrinsic to the prey and their state at the time

of escaping a predator. Survival may be more related to the

proactive or reactive coping styles of individuals, rather

than a set measure of individual performance (see Sih et al.

2004a, b; Bell 2007; Huntingford 2007; Stamps 2007).

Detailed behavioural assessments of how P. amboinensis

responds to predators are yet to be undertaken.

Alternately, burst/escape speed may not relate to the

probability of capture by a predator at settlement because

they do not know when to use the burst capability because

they have not yet learned to identify predators within the

new environment. Holmes and McCormick (2006) sug-

gested that the new recruits have to learn the identity of

predators before an escape response can be initiated.

Research suggests that juveniles of many aquatic organ-

isms with complex life cycles need to learn the identity

of predators to efficiently escape encounters with them

(Mathis et al. 1996; Brown and Laland 2003). If this

hypothesis is correct, fish that have experimentally learned

the identity of a predator could be expected to display the

predicted negative relationship between burst speed and

capture success by a predator.

The results of this study show that the patterns of

selectivity displayed by a single predator species under

controlled aquarium conditions were different from the

selective signature of the multi-species predator commu-

nity on open patch reefs, with respect to prey body weight.

In the field the pattern of body weight selection was highly

significant, with individuals of lower standardised weight

having a higher probability of survival. It is interesting to

note that Holmes and McCormick (2006) found selection at

the same field site to act against larger SL, indicating that

selective preferences of the predator community at this

location may simply be removing larger individuals.

Alternately, this result may relate to the higher predation

pressures placed on the prey within the confines of the

aquarium trials, as displayed by the Kaplan–Meier prod-

uct–limit plots. Although the confines of aquaria, a lower

habitat complexity, and a lack of alternate prey all poten-

tially played a role, this increase in predation pressure was

also observed to be a result of changing predator behaviour,

with species periodically changing in activity level over

time. This resulted in increased activity during the aquar-

ium-based standardized weight and burst speed trials in

particular. Despite the fact that this was uncontrollable, it is
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possible that this elevated mortality masked any selective

processes operating during these trials. However, results

may also be explained through an understanding of the

feeding ecology of different predator species and the

interaction of prey characteristics with the prey-selectivity

profiles of those predators (e.g. Takasuka et al. 2007, Allen

2008).

Compared to terrestrial and other aquatic systems, we

currently know very little about predation on tropical reef

fishes. In addressing this issue, the present study has pro-

vided us with direct and unconfounded evidence of the

selective processes underlying predation by a key predator

during a period potentially critical to adult population

dynamics. Our results suggest that under controlled condi-

tions, larger size at the time of settlement may actually be a

distinct disadvantage to prey during interactions with some

predator species. However, these relationships appear to be

more complex under natural conditions, where the expres-

sion of prey characteristics, the selectivity fields of a

number of different predators, their relative abundance, and

the action of external environmental characteristics, may all

influence which individuals survive. A greater knowledge

of these interactions and their underlying mechanisms is

crucial for the management of fisheries and conservation of

tropical marine ecosystems. It is only by understanding

predator–prey dynamics that we can predict how prey may

respond to changing predator populations or vice versa.
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